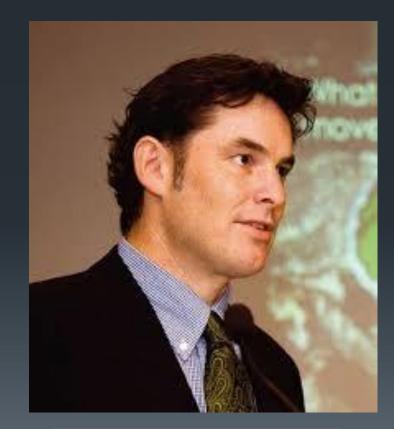

The influence of centralization on stability tests in patients with low back pain.

ADRI T. APELDOORN, PT, PhD1,2 • HANS VAN HELVOIRT, PT, MA3 • HANNEKE MEIHUIZEN, PT3 • HENK TEMPELMAN, PT4 DAVID VANDEPUT, PT5 • DIRK L. KNOL, PhD1 • STEVEN J. KAMPER, PT, PhD1,6 • RAYMOND W. OSTELO, PT, PhD1,7

JOSPT april 2016



How do we Match the right treatment to the right patient?

Stability training A very common intervention

Peter O'Sullivan

Paul Hodges

Prof Peter O'Sullivan and Core Stability - April 2012

Paul Hodges on core stability

Cardinal Features of MDT

Symptomatic responses

Mechanical responses

Subgroups

Baseline symptoms and movements

Repeated movements/ loading strategies

Which Subgroup?

Change in baselines

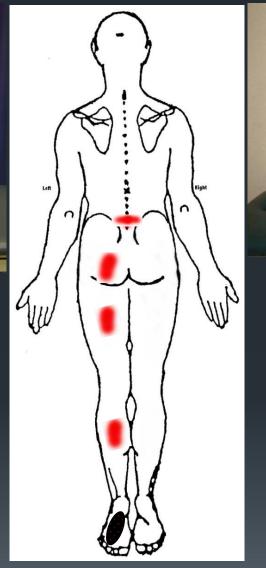
Derangement Centralization/Directional preference

Posture

Disturbance of the normal resting position of the joint surfaces

Study

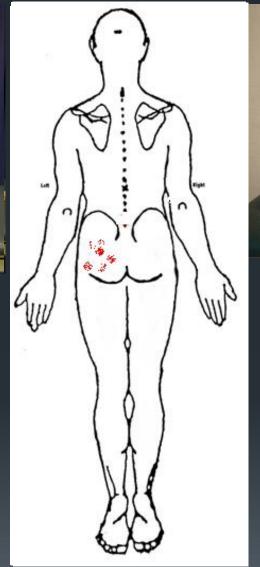
 Clinical experience: Centralization has a positive effect on motor control

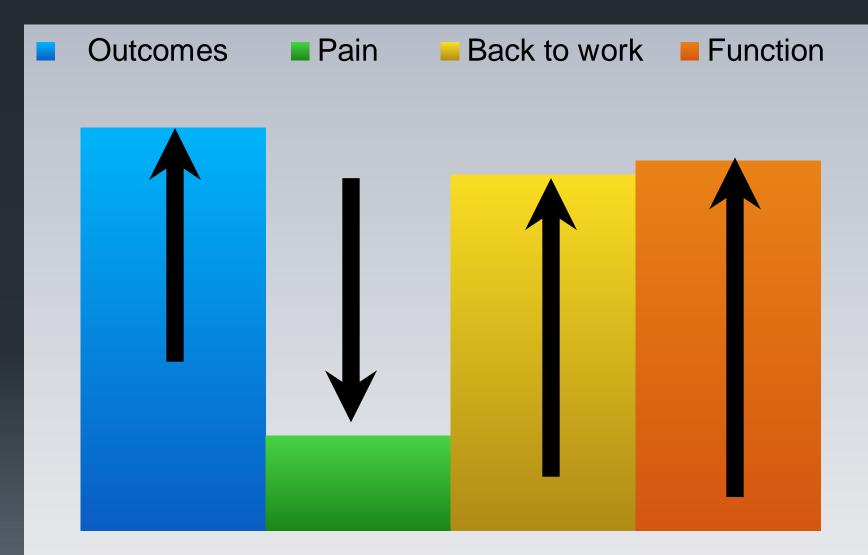

Research question What is the effect of centralization on motor control?

Hypothesis

In patients with a centralization phenomenon, the reduction in positive motor control tests will be larger compared to patients with directional preference.

Directional preference with centralization




Directional preference for extension without centralization

For many patients Centralisation means

Protocol

Tester 1

Pre-assessment 4 motor control tests

- Aberrant movements
- Prone instability test
- Trendelenb
- Active strai
- MDT diplomat
 MDT assessme

assessme SOM

Tester 1 (blinde

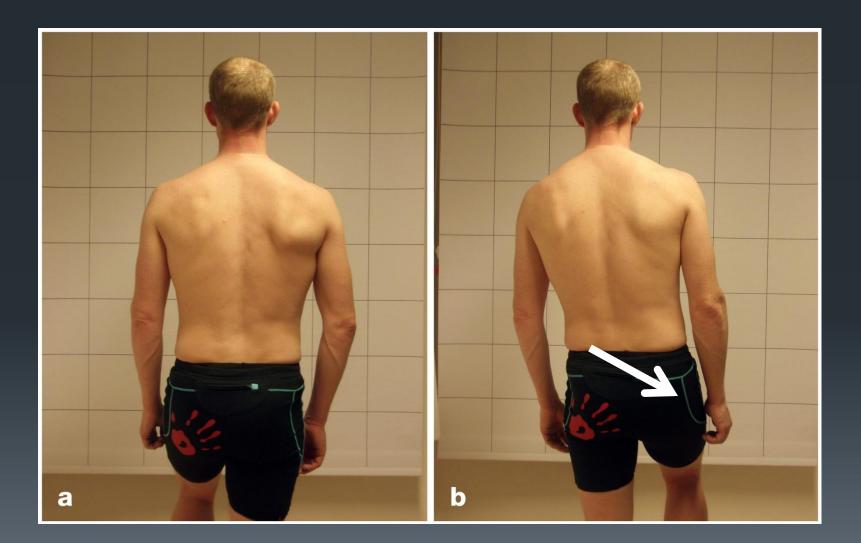
Easy to perform

Some evidence on reliability


Post-assessment 4 motor control tests

Aberrant movements (Hicks et al. 2003)

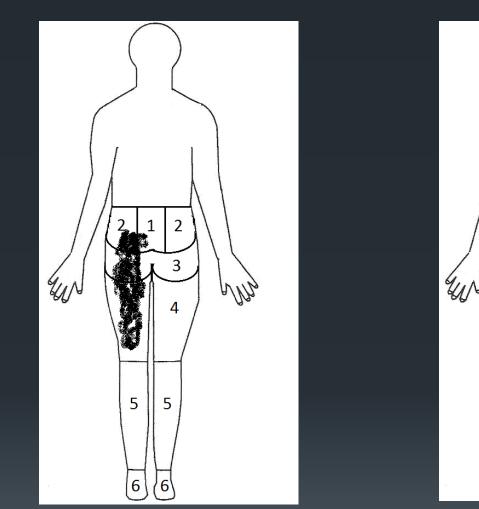
- a) Painful arc in flexion
- b) Painful arc on return
- c) Gower sign ('thigh climbing', using the hands for assistance)
- d) Instability or painful catch
- e) Reversal of lumbopelvic rhythm (the patient bends the knees and shifts the pelvis anteriorly before returning to erect position).


Negative (no motor control dysfunction) = 0
 Positive (motor control dysfunction) = 1 - 5

Prone Instability

Trendelenburg

Active straight leg raise (Mens et al. 2012) Subjective weakness; left leg (0-5) and right leg (0-5)


0) not difficult at all
1) minimally difficult
2) somewhat difficult
3) fairly difficult
4) very difficult
5) unable to do

Scores of both sides were summed (0-10)

- No motor control dysfunction =
 Moderate motor control dysfunction =
 Severe motor control dysfunction =
 - = 0
 - = 1-4
 - = 5-10

Pre-assessment Post-assessment

Localization of pain was pointed out by the patient on a drawing

3

Δ

5

6

4

5

6

NB

Baseline characteristics (n = 114)

43.9 (SD 11.2) Age in years Acuut (0-6 weeks) 28.4% Sub-acute (7-12 weeks) 8.3% Chronic (>12 weeks) 63.3% LBP past week(0-10) 5.2 (SD 2.5) Pain radiated in the leg 43% Oswestry disability index 25.2 (SD 15.5)

Prevalence motor control tests pre-assessment

Aberrant Movement	44%
Trendelenburg test	29%
Prone instability test	38%
ASLR	
no dysfunction (0)	36%
moderate dysfunction (1-4)) 50%
severe dysfunction (5-10)	14%

MDT assessment (n =114)

Derangementn = 74 (65%)

No derangement:n = 40 (35%)

CEN: n = 51 (45%)
DP but no CEN: n = 23 (20%)

Differences between the three groups (pre-test positive)

			Mogelijke oorzaken:							
	CEN (n	= 51)		Pijnprovocatie test						
	Pre- test + (n)	Post- test + (n)		Laterale beweging trendelenburg						
AM	30	17								
Trende- Ienburg	13	7	46%	8	4	50%	12	8	33%	
PIT	19	7	63%	7	1	86%	16	10	38%	
ASLR	31	15	52%	14	13 (7%	24	22 (8%	

Differences between the three groups (pre-test negative)

	CEN (n = 51)			DP (but no CEN) n = 23			Non-DP (n = 40)		
	Pre-test neg. (n)	Post- test neg. (n)	Change	Pre-test neg. (n)	Post- test neg. (n)	Change	Pre-test neg. (n)	Post- test neg. (n)	Change
AM	21	20	5%	16	15	6%	25	25	0%
Trende- lenburg	38	36	5%	15	15	0%	28	28	0%
PIT	31	28	10%	15	13	13%	23	22	4%
ASLR	20	18	10%	9	7	22%	15	14	7%

Severity of pain

	Pre- assessment (SD)	Post- assessment (SD)	Difference (SD)	p-value
CEN	4.0 (2.2)	1.2 (1.8)	2.8 (2.1)	<0.001
DP minus CEN	4.2 (2.7)	2.3 (1.9)	1.9 (1.9)	<0.001
Non-DP	3.7 (2.6)	4.0 (2.8)	- 0.2 (1.0)	0.152

NB: Mobility in ext en flexion changed in CEN, DP, no significant diff. between CEN, DP

Conclusions

Our hypothesis was confirmed

In patients with a centralization phenomenon, the reduction in positive motor control tests is larger (43%-63%) compared to patients without a derangement (7-38%).

Our results suggest that

- It is clinically interesting to start with a MDT assessment before motor control training
- Centralization is a clinically more important sign than directional preference in the absence of centralization

Baseline symptoms and movements

Including instability test baselines Repeated movements/ loading strategies

Which Subgroup?

Incl subgroup Relevant instability

Change in baselines

Take Home MessageWhy train your muscles, if you better repair your bicycle tire !